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Abstract A direct method for computation of the energy-effect (ef) of cycles in conju-
gated molecules is elaborated, based on numerical calculation of the (complex) zeros
of certain graph polynomials. Accordingly, the usage of the Coulson integral formula
can be avoided, and thus the ef-values can be calculated for arbitrary cycles of arbitrary
conjugated systems.
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1 Introduction

In the 1970s, a mathematical model was elaborated [1,2], capable of expressing the
effect of an individual cycle on the total π -electron energy of a polycyclic conju-
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gated molecule. In the several dozens of papers that followed, this energy-effect was
computed by means of a Coulson-integral type expression

e f (G, Z) = 2

π

∞∫

0

ln

∣∣∣∣ φ(G, i x)

φ(G, i x) + 2φ(G − Z , i x)

∣∣∣∣dx (1)

in which φ(G, x) and φ(G − Z , x) are the characteristic polynomials of the molecular
graph G and of its subgraph G − Zobtained by deleting from G the cycle Z , and
i = √−1. For details on Eq. (1) and its chemical applications see the review [3], the
recent papers [4–8] and the references cited therein. The method for efficient numerical
computation of e f (G, Z)via Eq. (1) has been described in due detail [8].

The weakness of formula (1) lies in the fact that its validity is restricted to conjugated
π -electron systems in which all bonding molecular orbitals are doubly occupied, and
all antibonding MOs are empty. The vast majority of chemically relevant conjugated
molecules (in particular, all alternant hydrocarbons in their ground state) satisfy this
condition, thus making Eq. (1) a useful tool for the study of their local aromaticity. On
the other hand, in the general case, Eq. (1) is not applicable to non-alternant conjugated
hydrocarbons and heteroatom-containing π -electron systems. It is also not applicable
in the case of ionic species and those in excited electronic states.

In order to develop a general method for computing e f (G, Z), we first need to
make a step back, and recall the original ideas lying in the foundation of the theory of
cyclic conjugation; for some recent studies along the same lines see [9,10].

The energy-effect of a cycle Z in a conjugated molecule is conceived [1–3] as
the difference between the actual π -electron energy Eπ and a quasi-energy Ere f

π

(sometimes referred to as the ‘”reference energy” [11]):

e f (G, Z) = Eπ − Eref
π (2)

The quasi-energy Eref
π is mathematically constructed by ignoring the contributions of

Z to Eπ , but retaining the contributions to Eπ of all other (cyclic and acyclic) structural
features of the underlying conjugated molecule.

Now, within the tight-binding Hückel MO model, Eπ can be is computed1 from the
characteristic polynomial φ (G, x), by calculating the roots λ1 ≥ λ2 ≥ · · · ≥ λn of
the equation φ (G, x) = 0, and by applying the formula

Eπ =
n∑

k=1

gkλk (3)

where gk is the occupation number of the k-th molecular orbital. In analogy to this,
the quasi-energy is conceived as

1 The quantities λk , k = 1, 2, . . . , n, are in fact the eigenvalues of the adjacency matrix. The usual way

of their computation is matrix diagonalization. On the other hand, the quantities λ
re f
k , k = 1, 2, . . . , n, are

not eigenvalues, and can only be obtained by calculating the zeros of the underlying polynomial.
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Eref
π =

n∑
k=1

gkλ
re f
k (4)

where λ
re f
k , k = 1, 2, . . . , n, have been shown [2] to be the roots of the polyno-

mial φre f (G, Z , x) := φ (G, x) + 2φ(G − Z , x) i.e., the solutions of the equation
φre f (G, Z , x) = 0.

In the general case, the roots of φre f (G, Z , x) are complex-valued, a1 + ib1, a2 +
ib2, . . . , an + ibn , and we will label them so that a1 ≥ a2 ≥ · · · ≥ an . In the vast
majority of chemically relevant cases (e.g., for even, ground-state, closed-shell π -
electron systems), the imaginary terms in the expression

∑n
k=1 gkλ

re f
k cancel out and

Eref
π automatically becomes real-valued. To be on the safe side, and in order to keep

e f (G, Z) real-valued in any case, it is purposeful to compute the reference energy via
the expression

Ere f
π =

n∑
k=1

gkak . (5)

In what follows, we describe a procedure by means of which the quantities
a1, a2, . . . , an and (if preferred) λ1, λ2, . . . , λn can be numerically computed. Then,
by employing Eqs. (2)–(5), the energy-effect of any cycle in any conjugated π -electron
system can be calculated.

2 Mathematical preliminaries

2.1 Theoretical basis of the Adomian decomposition method

In this section, for the convenience of the readers, we briefly describe the main features
of the Adomian decomposition method (ADM).

The ADM was developed by George Adomian (1922–1996) as a systematic and
robust technique for solving both deterministic and stochastic functional equations,
either linear or nonlinear [12,13]. Quite impressively, the ADM does not rely on any
unphysical or a priori restrictive assumption, such as imposed by linearization, pertur-
bation, discretization, ad hoc assumptions, guessing the initial term or a set of basis
functions, and so forth. A vast amount of literature is available on the theory of the
ADM as well as its application in analyzing mathematical models of physics, chem-
istry, biology, mechanical engineering, chemical engineering, etc [14–25]; for a bibli-
ography on ADM, covering the period 1961–2011, see [26]. Nevertheless, only limited
effort has been made so far to exploit the ADM for solving algebraic equations [27–32].

In order to describe the basics of the ADM, consider the functional equation

u − N (u) = f (6)

where N is a nonlinear operator from a Banach space B → B, f is a known element
of B and we are seeking u ∈ B that satisfies Eq. (6). We assume that for every f ∈ B,
Eq. (6) has a unique solution. The ADM proposes the solution u as an infinite series
of the form
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u =
∞∑

i=0

ui (7)

and decomposes the nonlinear operator N as

N (u) =
∞∑

i=0

Ai (8)

where the Ai ’s are called the Adomian polynomials and can be calculated through
their definitional formula as [13]:

Ai = Ai (u0, u1, . . . , ui ) = 1

i !
di

dλi
N

( ∞∑
k=0

ukλ
k

) ∣∣∣∣∣
λ=0

. (9)

Substituting Eqs. (7) and (8) back into Eq. (6), we obtain

∞∑
i=0

ui −
∞∑

i=0

Ai = f. (10)

Provided that the two series in Eq. (10) are convergent, we can construct the following
recursion relation to generate components of the solution as

{
u0 = f
ui+1 = Ai , i ≥ 0

. (11)

Note that in certain problems, it may suffice to truncate the infinite series in Eq. (10)
after their first m ≥ 1 components, which yields an approximant of the solution of the
form

φm =
m−1∑
i=0

ui . (12)

The convergence of the ADM has been proven rigorously by several authors, e.g. see
[33–35], and hence will be taken for grated here.

Elsewhere [36], two of the present authors developed an efficient algorithm for com-
putation of the Adomian polynomials named AdomPoly, which is based on functions
processing letter string elements and symbolic programming. Other algorithms for
the calculation of the Adomian polynomials have also been proposed in the literature
[37–39].

2.2 Two alternative algorithms for determination of the characteristic polynomial

2.2.1 The Faddeev–Leverrier algorithm

The Faddeev–Leverrier algorithm is an efficient iterative tool for calculation of the
characteristic polynomial of matrices [40]. This algorithm first takes �1 = � and

123



J Math Chem (2015) 53:1113–1125 1117

a0 = 1 for an n-by-n matrix �, and then relies on the following recursion:

{
�i+1 = �(�i + ai I ) , for 1 ≤ i < n
ai = − trace(�i )

i , for 1 ≤ i ≤ n
. (13)

In this way, all of the n + 1 coefficients of φ (x) = ∑n
i=0 ai xn−i , i.e. the character-

istic polynomial of �, are found. As an additional benefit of the Faddeev–Leverrier
algorithm, the inverse matrix �−1 can be obtained at no extra computational expense
by means of the formula �−1 = − (1/an) (�n−1 + an−1 I ).

2.2.2 Jacobson’s algorithm based on matrix minors

According to Jacobson [41], the coefficients of the characteristic polynomial of the
matrix A, namely

P (x) = det (A − xI) = (−1)n
(

xn − a1xn−1 + · · · + (−1)n an

)
(14)

can be calculated by

⎧⎨
⎩

a1 = trace (A)

ai = sum of the i-rowed principal minors of the matrix A for 2 ≤ i ≤ n − 1
an = det (A)

.

(15)

2.3 The Shanks transform

The Shanks transform, which is due to Daniel Shanks (1917–1996), is a nonlinear
transform that can dramatically accelerate the convergence of its input series [42].
The Shanks transformation Sh (Un) of the sequence Un is defined as

Sh (Un) = Un+1Un−1 − U 2
n

Un+1 − 2Un + Un−1
. (16)

Further speed-up will be achieved by successive implementation of the Shanks
transformation, i.e., by the iterated Shanks transforms Sh2 (Un) = Sh (Sh (Un)),
Sh3 (Un) = Sh (Sh (Sh (Un))), etc.

Definition 2.1 Let A ∈ Cn×n be a complex-valued matrix with entries ai j . Let Ri =∑n
j �=i

∣∣ai j
∣∣, for i ∈ {1, . . . , n}, be the sum of absolute values of the non-diagonal

entries in the i-th row. Also, let D (aii , Ri ) be the closed disc centered at aii with
radius Ri . Such a disc is known as a Gershgorin disc.

Theorem 2.1 (Gershgorin’s circle theorem) [43] Every eigenvalue of the matrixA lies
within at least one of the Gershgorin discs D (aii , Ri ).

Definition 2.2 (Sturm sequence) For a polynomial P (x) of degree n, consider the
following recursion
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p0 (x) = P (x) ,

p1 (x) = d P (x)/dx,

p2 (x) = −rem (p0, p1) ,
...

pm (x) = −rem (pm−2, pm−1) ,

pm+1 (x) = −rem (pm−1, pm) = 0,

(17)

where rem
(

pi , p j
)

is the remainder of the polynomial long division of pi by p j and
m ≤ n. The sequence {p0, p1, . . . , pm} is called the Sturm sequence of P (x).

Theorem 2.2 (Sturm) [41,44] Let {p0, p1, . . . , pm} be a Sturm’s sequence of the
polynomial P (x), and denote by σ (ξ) the number of sign changes (ignoring zeroes)
in the sequence {p0 (ξ) , p1 (ξ) , . . . , pm (ξ)}. Then for any two real numbers a < b,
P (x) has σ (a) − σ (b) distinct real roots within the interval (a , b].

3 Our combined algorithm

Due to reasons described above, we are interested in finding all the roots of the fol-
lowing polynomials:

P (x) = φ (G, x) (18)

Q (x) = φ (G, x) + 2φ (G − Z , x) . (19)

Since the graph G − Z has fewer vertices than the graph G, we readily conclude that
Q (x) is monic and of degree n. Therefore, in other words, we shall solve the following
type of equation both for P (x) and Q (x):

xn + cn−1xn−1 + · · · + c2x2 + c1x + c0 = 0 (20)

By adopting Adomian’s operator-theoretic notation, Eq. (20) is converted to

Lx + N x = g (21)

where L = c1, N x = xn + cn−1xn−1 + · · · + c2x2, and g = −c0.
Assuming c1 �= 0, we select L−1 = 1/c1 which yields

L−1Lx = L−1g − L−1 N x (22)

or, equivalently,

x = −c0

c1
− 1

c1
xn − cn−1

c1
xn−1 − · · · − c2

c1
x2. (23)
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In agreement with Adomian’s methodology, see Eq. (11), we find the first approximate
real root of P (x) as r̃1 ≈ ∑m

i=0 xi , where

{
x0 = − c0

c1

xi+1 = − 1
c1

�(n,i) − cn−1
c1

�(n−1,i) − · · · − c2
c1

�(2,i) for i ≥ 0
(24)

with �(n,i), �(n−1,i), . . . , �(2,i) denoting the respective Adomian polynomials
decomposing the nonlinear terms xn, xn−1, . . . , x2 in Eq. (23).

As pointed out in [32], other real roots of Eq. (25), can be found by polynomial
deflation followed by reapplying the procedure described through Eqs. (20)–(24). For
instance, the following equation

xn + cn−1xn−1 + · · · + c2x2 + c1x + c0

x − μ1
= 0

= xn−1 + bn−2xn−2 + · · · + b2x2 + b1x + b0 (25)

can be examined for achieving the next remaining real root of P (x) or Q (x).
In the case of a diverging series generated by the recurrence relation (24), which

may also imply the existence of at least two complex conjugate roots [27], the change
of the variable y = x −α enables the calculation of the real-valued roots. Appropriate
choices for α can be obtained with the aid of the Gershgorin circle theorem; in this
regard, see [25,32].

Complex conjugate roots of Q (x) can be calculated in a similar way via the ADM,
but through the use of other equivalent canonical forms of Eq. (20), which involve even-
root expressions and the choice of zero for the first solution component. Specifically,
the canonical form of Eq. (20), presuming that c2 �= 0, is

x =
√

− 1

c2
xn − cn−1

c2
xn−1 − · · · − c3

c2
x3 − c1

c2
x − c0

c2
. (26)

Consequently, the classic ADM generates the solution components by the recurrence
relation as {

x0 = 0
xi+1 = 
i for i ≥ 0

(27)

where 
i are the Adomian polynomials, decomposing the square-root term on the
right-hand side of Eq. (26). Accordingly, r2 = ∑∞

i=0 xi , or its truncated approximation
r̃2 = ∑m

i=0 xi , corresponds to one, if any, of the complex roots of Q (x). In Fig. 1 is
depicted the flowchart for our new scheme, which is able to systematically calculate
all the roots of a polynomial, either real or complex.
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Fig. 1 Flowchart of our combined algorithm for finding real and complex roots of a polynomial

4 Illustrative examples

In order to better illustrate our algorithm, we follow step-by-step the computation of the
energy-effect e f (G, Z) of a particular six-membered ring Z of benzo[a]anthracene,
cf. Fig. 2.

By means of the Faddeev–Leverrier algorithm, we first compute

P (x) = φ (G, x) = x18 − 21x16 + 180x14 − 823x12 + 2203x10

−3558x8 + 3430x6 − 1868x4 + 505x2 − 49
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Fig. 2 The molecular graph of
benzo[a]anthracene (G) and its
cycle Z (indicated by shading)
for which e f (G, Z) is being
calculated

Q (x) = φre f (G, Z , x) = x18 − 21x16 + 180x14 − 821x12 + 2181x10

−3472x8 + 3280x6 − 1752x4 + 473x2 − 47

In order to calculate the energy-effect of the cycle Z on the molecular graph G,
we need to find all the roots of the polynomials P (x) and Q (x). By Sturm’s theo-
rem, it is easy to find that P (x) has eighteen whereas Q (x) fourteen real roots in
(−∞,+∞).

Since all terms of P (x) have even exponents, the variable change of x 
→ x2 would
save computational time. In order to find the zeroes of P (x), we apply the algorithm
explained in Fig. 1 as follows:

Action on P (x) Obtained root

x2 
→ x + α, (α = 0.5) & Adomian recursion formula r1 = 0.71496

r2 = −0.71496

Deflate by
∏2

i=1 (x − ri ) & x2 
→ x + α, (α = 0.6) & Adomian recursion formula r3 = 1.00000

r4 = −1.00000

Deflate by
∏4

i=1 (x − ri ) & x2 
→ x + α, (α = 0.8) & Adomian recursion formula r5 = 1.32305

r6 = −1.32305

Deflate by
∏6

i=1 (x − ri ) & x2 
→ x + α, (α = 1) & Adomian recursion formula r7 = 1.16563

r8 = −1.16563

Deflate by
∏8

i=1 (x − ri ) & x2 
→ x + α, (α = 1.6) & Adomian recursion formula r9 = 1.47986

r10 = −1.47986

Deflate by
∏10

i=1 (x − ri ) & x2 
→ x + α, (α = 0.4) & Adomian recursion formula r11 = 0.45231

r12 = −0.45231

Deflate by
∏12

i=1 (x − ri ) & x2 
→ x + α, (α = 1.8) & Adomian recursion formula r13 = 1.75461

r14 = −1.75461

Deflate by
∏14

i=1 (x − ri ) & x2 
→ x + α, (α = 7) & Adomian recursion formula r15 = 2.48465

r16 = −2.48465

Deflation by
∏16

i=1 (x − ri ) r17 = 2.17552
r18 = −2.17552

Note that the polynomial deflation operation can be optionally carried out by means
of appropriate commands in commercial software packages; for example “deconv” in
MATLAB.

In a fully analogous manner, we can adopt our algorithm to obtain all roots of
Q (x):
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Action on Q (x) Obtained root

x2 
→ x + α, (α = 1.3) & Adomian recursion formula r1 = 1.17964
r2 = −1.17964

Deflate by
∏2

i=1 (x − ri ) & x2 
→ x + α, (α = 1.6)&
Adomian recursion formula

r3 = 1.31002
r4 = −1.31002

Deflate by
∏4

i=1 (x − ri ) & x2 
→ x + α, (α = 5)&
Adomian recursion formula

r5 = 2.17102
r6 = −2.17102

Deflate by
∏6

i=1 (x − ri ) & x2 
→ x + α, (α = 2.4)&
Adomian recursion formula

r7 = 1.53601
r8 = −1.53601

Deflate by
∏8

i=1 (x − ri ) & x2 
→ x + α, (α = 4)&
Adomian recursion formula

r9 = 1.81481
r10 = −1.81481

Deflate by
∏10

i=1 (x − ri ) & x2 
→ x + α, (α = 6)&
Adomian recursion formula

r11 = 2.46114
r12 = −2.46114

Deflate by
∏12

i=1 (x − ri ) & x2 
→ x + α, (α = 0.1)&
Adomian recursion formula

r13 = 0.46726
r14 = −0.46726

Deflate by
∏14

i=1 (x − ri ) & x2 
→ x + α, (α = 1)&
Adomian recursion formula (square-root canonical
form)

r15 = 0.79456 + 0.07807i

r16 = 0.79456 − 0.07807i

Deflation by
∏16

i=1 (x − ri ) r17 = −0.79456 + 0.07807i
r18 = −0.79456 − 0.07807i

Returning to the notation used in Eqs. (3) and (4), we thus have

λ1 = 2.48465, λ2 = 2.17552, λ3 = 1.75461, λ4 = 1.47986,

λ5 = 1.32305, λ6 = 1.16563, λ7 = 1.00000, λ8 = 0.71496,

λ9 = 0.45231, λ10 = −0.45231, λ11 = −0.71496, λ12 = −1.00000,

λ13 = −1.16563, λ14 = −1.32305, λ15 = −1.47986, λ16 = −1.75461,

λ17 = −2.17552, λ18 = −2.48465

and

λ
re f
1 = 2.46114, λ

re f
2 = 2.17102, λ

re f
3 = 1.81481, λ

re f
4 = 1.53601,

λ
re f
5 = 1.31002, λ

re f
6 = 1.17964, λ

re f
7 = 0.79456 + 0.07807i,

λ
re f
8 = 0.79456 − 0.07807i, λ

re f
9 = −0.79456 + 0.07807i,

λ
re f
10 = −0.79456 − 0.07807i, λ

re f
11 = −0.71496, λ

re f
12 = −1.00000,

λ
re f
13 = −1.17964, λ

re f
14 = −1.31002, λ

re f
15 = −1.53601, λ

re f
16 = −1.81481,

λ
re f
17 = −2.17102, λ

re f
18 = −2.46114.

Now, bearing in mind that in the ground state of benzo[a]anthracene, g1 = g2 =
· · · = g9 = 2 and g10 = g11 = · · · = g18 = 0, we can compute Eπ (G) according to
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Eq. (3), as

Eπ (G) = 2 × (2.48465 + 2.17552 + 1.75461 + 1.47986 + 1.32305

+1.16563 + 1.00000 + 0.71496 + 0.45231) = 25.10118

and, analogously, Ere f
π (G, Z) according to Eq. (4) as

Ere f
π (G, Z) = 2 × (2.46114 + 2.17102 + 1.81481 + 1.53601 + 1.31002

+ 1.17964 + 0.79456 + 0.07807i + 0.79456 − 0.07807i

+ 0.46726) = 25.05804

As it is usually the case, the imaginary parts of the λ
re f
k ’s canceled each other.

Finally, by Eq. (2),

e f (G, Z) = 25.10118 − 25.05804 = +0.04314.

An identical value for e f (G, Z) could have been obtained by using Eq. (1), which
would require a much easier calculation procedure. On the other hand, by means of
the above determined λk and λ

re f
k values, we can now calculate also the energy-effects

pertaining to charged or excited forms of benzo[a]anthracene, which are not accessible
by employing formula (1). For instance, we can calculate the following quantities.

(1) Energy-effect of cycle Z of benzo[a]anthracene monocation (g1 = g2 = · · · =
g8 = 2, g9 = 1, g10 = g11 = · · · = g18 = 0):

Eπ (G+) = 2 × (2.48465 + 2.17552 + 1.75461 + 1.47986 + 1.32305

+ 1.16563 + 1.00000 + 0.71496) + 0.45231 = 24.64887

Eref
π

(
G+, Z

) = 2 × (2.46114 + 2.17102 + 1.81481 + 1.53601 + 1.31002

+ 1.17964 + 0.79456 + 0.07807i + 0.79456 − 0.07807i)

+ 0.46726 = 24.59078

e f
(
G+, Z

) = 24.64887 − 24.59078 = +0.05809

(2) Energy-effect of cycle Z of benzo[a]anthracene dianion (g1 = g2 = · · · = g10 =
2, g11 = g12 = · · · = g18 = 0):

Eπ (G2−) = 2 × (2.48465 + 2.17552 + 1.75461 + 1.47986

+1.32305 + 1.16563

+1.00000 + 0.71496 + 0.45231 − 0.45231) = 24.19656

Ere f
π

(
G2−, Z

)
= 2 × (2.46114 + 2.17102 + 1.81481 + 1.53601 + 1.31002

+1.17964 + 0.79456 + 0.07807i + 0.79456 − 0.07807i
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Fig. 3 Energy-effects of the
cycles (indicated by shading) of
a 4-cyclic pentagonal chain. Its
molecular graph has 8 bonding
and 6 antibonding MOs. In
square brackets are the (false)
ef-values obtained by applying
Eq. (1)

+0.46726 − 0.46726) = 24.12352

e f
(

G2−, Z
)

= 24.19656 − 24.12352 = +0.07304

(3) Energy-effect of cycle Z in the second excited state of benzo[a]anthracene (g1 =
g2 = · · · = g8 = 2, g9 = g11 = 1, g10 = g12 = g13 = · · · = g18 = 0):

Eπ (G∗) = 2 × (2.48465 + 2.17552 + 1.75461 + 1.47986 + 1.32305

+1.16563 + 1.00000 + 0.71496) + 0.45231

−0.71496 = 23.93381

Eref
π

(
G∗, Z

) = 2 × (2.46114 + 2.17102 + 1.81481 + 1.53601 + 1.31002

+1.17964 + 0.79456 + 0.79456) + 0.46726 − 0.79456

= 23.79622

e f
(
G∗, Z

) = 23.93381 − 23.79622 = +0.13759

Note that in this latter example, the imaginary terms would not cancel out and therefore
we had to apply Eq. (5).

Another group of examples where our method would be advantageous (whereas
Eq. (1) is inapplicable) are the conjugated systems which in their ground states pos-
sess filled antibonding or empty bonding molecular orbitals. Such π -electron systems
abound among non-alternant hydrocarbons (for details see [45]).

Characteristic representatives are pentagonal chains, in which one or more bonding
MOs are empty. As an illustrative example, in Fig. 3 we provide the energy-effect of
the cycles of a 4-cyclic pentagonal chain.
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